您的位置:就爱生活 > 杂谈 > >正文

​中考必做的36道压轴题

摘要中考必做的36道压轴题 中考必做的36道压轴题1: 如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆...

中考必做的36道压轴题

中考必做的36道压轴题1:

如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.

(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;

(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.

解题反思:

此题主要考查了相似三角形的性质与判定以及直线与圆的位置关系和圆与圆的位置关系,正确判定直线与圆的位置关系是重点知识同学们应重点复习。

中考必做的36道压轴题2:

如图,线段AD=5,⊙A的半径为1,C为⊙A上一动点,CD的垂直平分线分别交CD于点E,B,连接BC,AC,构成△ABC,设AB=x.

(1)求x的取值范围;

(2)若△ABC为直角三角形,则x=;

(3)设△ABC的面积的平方为W,求W的最大值。

解题反思:

此题考查了三角形三边关系,线段垂直平分线的性质,直角三角形的性质以及二次函数的最值问题等知识.此题综合性很强,难度适中,解题的关键是注意数形结合与分类讨论思想的应用.

中考必做的36道压轴题3:

如图,在平面直角坐标系xOy中,一抛物线的顶点坐标是(0,1),且过点(﹣2,2),平行四边形OABC的顶点A、B在此抛物线上,AB与y轴相交于点M.已知点C的坐标是(﹣4,0),点Q(x,y)是抛物线上任意一点.

(1)求此抛物线的解析式及点M的坐标;

(2)在x轴上有一点P(t,0),若PQ∥CM,试用x的代数式表示t;

(3)在抛物线上是否存在点Q,使得△BAQ的面积是△BMC的面积的2倍?若存在,求此时点Q的坐标.

解题反思:

此题考查了待定系数法求二次函数的解析式,平行四边形的性质,相似三角形的判定与性质以及三角形面积问题.此题综合性很强,解题的关键是注意数形结合与方程思想的应用.

中考必做的36道压轴题4:

已知抛物线y=ax﹣2ax﹣3a(a<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.

(1)求A、B的坐标;

(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;

(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.

解题反思:

本题是二次函数的综合题型,其中涉及的知识点有一元二次方程的解法.在求有关存在不存在问题时要注意先假设存在,再讨论结果.

中考必做的36道压轴题5:

如图,已知抛物线y=-4x/9+bx+c与x轴相交于A、B两点,其对称轴为直线x=2,且与x轴交于点D,AO=1.

(1)填空:b=.c=,点B的坐标为(,):

(2)若线段BC的垂直平分线EF交BC于点E,交x轴于点F.求FC的长;

(3)探究:在抛物线的对称轴上是否存在点P,使⊙P与x轴、直线BC都相切?若存在,请求出点P的坐标;若不存在,请说明理由.

解题反思:

本题主要考查对解二元一次方程组,二次函数图象上点的坐标特征,用待定系数法求二次函数的解析式,勾股定理,线段的垂直平分线定理等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.

中考必做的36道压轴题6:

如图,已知抛物线与坐标轴分别交于A(-2,O)、B(2,0)、C(0,-1)三点,过坐标原点O的直线y=kx与抛物线交于M、N两点.分别过点C、D(0,-2)作平行于x轴的直线l、l.

(1)求抛物线对应二次函数的解析式;

(2)求证以ON为直径的圆与直线l相切;

(3)求线段MN的长(用k表示),并证明M、N两点到直线l的距离之和等于线段MN的长.

解题反思:

(1)根据点在曲线上,点的坐标满足方程的关系,用待定系数法即可求出抛物线对应二次函数的解析式。

(2)要证以ON为直径的圆与直线l相切,只要证ON的中点到直线l的距离等于ON长的一半即可。

(3)运用一元二次方程根与系数的关系,求出MN和M、N两点到直线l的距离之和,相比较即可。

中考必做的36道压轴题7:

如图,在平面直角坐标系中,抛物线y=ax+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2)。直线y=x与抛物线交于点D、E(点E在对称轴的右侧)。抛物线的对称轴交直线y=x于点C,交x轴于点G。PM⊥x轴,垂足为点F。点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形。

(1)求该抛物线的表达式;

(2)求点P的坐标;

(3)试判断CE与EF是否相等,并说明理由;

(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由。

解题反思:

(1)根据抛物线的顶点,设顶点式表达式,将点A的坐标人代入即可求解。

(2)由点C是抛物线对称轴x=2和直线y=x的交点可求得点C的坐标,由△PCM为等边三角形,根据锐角三角函数定义和特殊角的三角函数值可求得点P的坐标。

(3)计算出CE和EF的值即可得出结论。

(4)用反证法证明,假设在x轴上点M的右侧存在一点N,使△CMN≌△CPE,推出与公理矛盾的结论。

中考必做的36道压轴题8:

如图,二次函数y=x+bx+c的图象与x轴交于A、B两点,且A点坐标为

(-3,0),经过B点的直线交抛物线于点D(-2,-3).

(1)求抛物线的解析式和直线BD解析式;

(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.

解题反思:

(1)把A、D两点的坐标代入二次函数解析式可得二次函数解析式中b,c的值,让二次函数的y等于0求得抛物线与x轴的交点B,把B、D两点代入一次函数解析式可得直线BD的解析式。

(2)得到用a表示的EF的解析式,跟二次函数解析式组成方程组,得到含y的一元二次方程,进而根据y=-3求得合适的a的值即可。

中考必做的36道压轴题9:

如图,顶点坐标为(2,-1)的抛物线y=ax+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.

(1)求抛物线的表达式;

(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;

(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.

解题反思:

二次函数综合题,二次函数的性质,待定系数法,曲线图上点的坐标与方程的关系,等腰直角三角形的性质,相似三角形的判定和性质。

中考必做的36道压轴题10:

已知抛物线y=√3x/2+bx+6√3经过A(2,0).设顶点为点P,与x轴的另一交点为点B.

(1)求b的值,求出点P、点B的坐标;

(2)如图,在直线y=√3x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;

(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,平行四边形的判定,勾股定理,等边三角形的判定和性质,全等三角形的判定。

中考必做的36道压轴题11:

已知关于x的二次函数y=ax

2

+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)

(1)求c的值;

(2)求a的取值范围;

(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S

1

,△PAB的面积为S

2

,当0

1

- S

2

为常数,并求出该常数。

解题反思:

本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组,解一元一次方程,相似三角形的性质和判定,根的判别式,根与系数的关系,二次函数图象上点的坐标特征,二次函数与X轴的交点等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,题型较好,难度适中。

中考必做的36道压轴题12:

如图1,抛物线y=mx﹣11mx+24m(m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.

(1)填空:OB=,OC=;

(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;

(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.

解题反思:

此题主要考查了二次函数与坐标轴交点坐标求法以及菱形性质和四边形面积求法等知识,根据已知得出△ACE∽△BAE是解决问题的关键.

中考必做的36道压轴题13:

如图,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线对称轴l与x轴相交于点M.

(1)求抛物线的解析式和对称轴;

(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形四条边的长度为四个连续的正整数,请你直接写出点P的坐标;

(3)连接AC.探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请你说明理由.

解题反思:

此题考查了待定系数法求二次函数的解析式,勾股定理以及三角形面积的最大值问题.此题综合性很强,难度很大,解题的关键是方程思想与数形结合思想的应用.

中考必做的36道压轴题14:

如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.

(1)求证:KE=GE;

(2)若KG=KD·GE,试判断AC与EF的位置关系,并说明理由;

(3)在(2)的条件下,若sinE=3/5,AK=2√5,求FG的长.

解题反思:

切线的性质,勾股定理,垂径定理,圆周角定理,等腰三角形的判定和性质,相似三角形的判定和性质,平行的判定,锐角三角函数定义。

中考必做的36道压轴题15:

如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.

(1)求证:直线CP是⊙O的切线.

(2)若BC=2√5,sin∠BCP=√5/5,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

解题反思:

切线的判定和性质,三角形内角和定理,等腰三角形的性质,勾股定理,相似三角形的判定和性质,锐角三角函数定义。

中考必做的36道压轴题16:

已知,如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(-1,0)。

(1)求点C的坐标;

(2)求过A、B、C三点的抛物线的解析式和对称轴;

(3)设点P(m,n)是抛物线在第一象限部分上的点,△PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标;

(4)在抛物线对称轴上,是否存在这样的点M,使得△MPC(P为上述(3)问中使S最大时点)为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。

解题反思:

二次函数综合题,相似三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,等腰三角形的判定和性质。

中考必做的36道压轴题17:

如图,抛物线y=ax﹣4ax+c(a≠0)经过A(0,﹣1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.

(1)求a,c的值;

(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;

(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)

解题法纳斯:

本题考查了待定系数法,直线与二次函数相交的问题,直线与圆的位置关系,综合性较强,对同学们的能力要求较高,(3)中要注意分点P有在对称轴左边与右边的两种情况,容易漏解而导致出错.

中考必做的36道压轴题18:

如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;

(2)求点D的坐标;

(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,等腰直角三角形的判定和性质,相似三角形的判定和性质。

中考必做的36道压轴题19:

如图,二次函数y=-x/2+mx+1/2的图象与x轴相交于点A、B(点在点的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H。

(1)当m=3/2时,求tan∠ADH的值;

(2)当60°≤∠ADB≤90°时,求m的变化范围;

(3)设△BCD和△ABC的面积分别为S、S,且满足S=S,求点D到直线BC的距离。

解题反思:

二次函数综合题,二次函数的性质,曲线上点的坐标与方程的关系,待定系数法,锐角三角函数定义,点到直线的距离,解二元一次方程组和一元二次方程。

中考必做的36道压轴题20:

已知,如图,二次函数y=ax+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A.B两点(B在A点右侧),点H.B关于直线l:y=√3x/3+3对称.

(1)求A.B两点坐标,并证明点A在直线l上;

(2)求二次函数解析式;

(3)过点B作直线BK∥AH交直线l于K点,M.N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.

解题反思:

本题主要考查对勾股定理,解二元一次方程组,二次函数与一元二次方程,二次函数与X轴的交点,用待定系数法求二次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,有一定的难度.

中考必做的36道压轴题21:

已知顶点为A(1,5)的抛物线y=ax+bx+c经过点B(5,1).

(1)求抛物线的解析式;

(2)如图(1),设C,D分别是x轴、y轴上的两个动点,求四边形ABCD的周长;

(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P(x,y)(x>0)是直线y=x上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PRQ.

①当△PBR与直线CD有公共点时,求x的取值范围;

②在①的条件下,记△PQR与△COD的公共部分的面积为S.求S关于x的函数关系式,并求S的最大值.

解题反思:

本题考查的是二次函数的综合题,(1)利用顶点式求出二次函数的解析式,(2)确定四边形的周长,(3)根据对称性求出CD的解析式,然后求出x的取值范围和S与x的函数关系.

中考必做的36道压轴题22:

如图,一次函数y=-x/2+2分别交y轴、x轴于A、B两点,抛物线y=﹣x+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,锐角三角函数定义,平行四边形的判定和性质。

中考必做的36道压轴题23:

如图,已知抛物线y=ax+bx+c经过A(4,0),B(2,3),C(0,3)三点.

(1)求抛物线的解析式及对称轴.

(2)在抛物线的对称轴上找一点M,使得MA+MB的值最小,并求出点M的坐标.

(3)在抛物线上是否存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,线段最短的性质,梯形的判定。

中考必做的36道压轴题24:

已知抛物线的顶点是C (0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.

(1)求含有常数a的抛物线的解析式;

(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;

(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S

ABD

= 4√2,求a的值.

解题反思:

此题主要考查了二次函数的综合应用以及勾股定理的应用,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.

中考必做的36道压轴题25:

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(-1,0),B(-1,2),D(3,0),连接DM,并把线段DM沿DA方向平移到ON,若抛物线y=ax+bx+c经过点D、M、N.

(1)求抛物线的解析式.

(2)抛物线上是否存在点P.使得PA=PC.若存在,求出点P的坐标;若不存在.请说明理由.

(3)设抛物线与x轴的另—个交点为E.点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有最大?并求出最大值.

解题反思:

(1)待定系数法是确定函数解析式的常用方法,运用时要确定好图象上关键点的坐标,本题中点N的坐标可以根据平面直角坐标系中点的坐标的平移规律来得到.

(2)求函数的交点坐标,通常是通过解由两个函数的解析式联立所得的方程组来求解.本题综合性强,解答时需具备较强的数学基本功,若知识掌握欠缺,则不容易得分.

中考必做的36道压轴题26:

如图,已知二次函数y=1/48·(x+2)(ax+b)的图像过点A(-4,3),B(4,4).

(1)求二次函数的解析式:

(2)求证:△ACB是直角三角形;

(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D、为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由。

解题反思:

二次函数综合题,曲线上点的坐标与方程的关系,勾股定理和逆定理的应用,相似三角形的判定性质,坐标系中点的坐标的特征,抛物线与x轴的交点,解一元二次方程和二元一次方程组。

中考必做的36道压轴题27:

如图,已知抛物线的方程C

1

:y=-1/m·(x+2)(x-m)(m>0)与x轴相交于点B、

C,与y轴相交于点E,且点B在点C的左侧.

(1)若抛物线C

1

过点M(2,2),求实数m的值.

(2)在(1)的条件下,求△BCE的面积.

(3)在(1)的条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标.

(4)在第四象限内,抛物线C

1

上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.

解题反思:

二次函数综合题,曲线上点的坐标与方程的关系,二次函数的性质,轴对称的性质,两点之间线段最短的性质,相似三角形的判定和性质。

中考必做的36道压轴题28:

如图,已知抛物线y=﹣x+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.

(1)抛物线及直线AC的函数关系式;

(2)设点M(3,m),求使MN+MD的值最小时m的值;

(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;

(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,轴对称的性质,三角形三边关系,平行四边形的判定和性质,二次函数的最值。

中考必做的36道压轴题29:

如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC.

(1)求此抛物线的解析式;

(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D的坐标;

(3)抛物线对称轴上是否存在一点M,使得S

MAP

=2S

ACP

,若存在,求出M点坐标;若不存在,请说明理由.

解题反思:

此题主要考查了二次函数的综合应用,二次函数的综合应用是初中阶段的重点题型特别注意利用数形结合是这部分考查的重点也是难点同学们应重点掌握.

中考必做的36道压轴题30:

如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S

ABC

=15,抛物线y=ax+bx+c(a≠0)经过A、B、C三点.

(1)求此抛物线的函数表达式;

(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;

(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7√2?若存在,求出点M的坐标;若不存在,请说明理由.

解题反思:

本题考查了二次函数的综合运用.关键是采用形数结合的方法,准确地用点的坐标表示线段的长,根据图形的特点,列方程求解,注意分类讨论.

中考必做的36道压轴题31:

如图,在直角坐标系中,已知点A(0,1),B(﹣4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.

(1)求抛物线的解析式和点C的坐标;

(2)抛物线上一动点P,设点P到x轴的距离为d

1

,点P到点A的距离为d,试说明d=d+1;

(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.

解题反思;

本题考查了点在抛物线上,点的横纵坐标满足二次函数的解析式和顶点在原点的二次函数的解析式为:y=ax;也考查了旋转的性质、勾股定理以及两点之间线段最短.

中考必做的36道压轴题32:

如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-4x/9+bx+c经过A、C两点,与AB边交于点D.

(1)求抛物线的函数表达式;

(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.

①求S关于m的函数表达式,并求出m为何值时,S取得最大值;

②当S最大时,在抛物线y=-4x/9+bx+c的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.

解题反思:

本题是二次函数的综合题,其中涉及的到的知识点有抛物线的公式的求法抛物线的最值等知识点,是各地中考的热点和难点,,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题。

中考必做的36道压轴题33:

如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式;

(2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;

(3)当P移动到点(1/2,1/2)时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标.

解题反思:

本题考查二次函数的综合运用,其中考查了通过坐标来确定二次函数式,求抛物线的对称轴,以及根据等腰三角形的性质求出坐标.

中考必做的36道压轴题34:

如图,经过点A(0,-4)的抛物线y=x/2+bx+c与x轴相交于点B(-0,0)和C,O为坐标原点.

(1)求抛物线的解析式;

(2)将抛物线y=x/2+bx+c向上平移7/2个单位长度、再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围;

(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.

解题反思:

二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,勾股定理。

中考必做的36道压轴题35:

如图,抛物线y=-x+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,

(1)求抛物线所对应的函数解析式;

(2)求△ABD的面积;

(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.

解题反思:

二次函数综合题,矩形的性质,曲线图上点的坐标与方程的关系,解一元二次方程,二次函数的性质,旋转的性质。

中考必做的36道压轴题36:

如图,二次函数y=ax+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;

(2)点P在x轴正半轴上,且PA=PC,求OP的长;

(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;

②若⊙M的半径为4√5/5,求点M的坐标.

解题反思:

二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,平行的判定和性质,相似三角形的判定和性质,解一元二次方程。

标签:

推荐阅读